BOCK FK

BOCK Frickenhausen, Frank Alisch Trainer Training Department 13.und 15.04.21

Service and Maintenance FK Webinar

Marc EN und Frank DE

BOCK

colour the world of tomorrow

Agenda BOCK FK-Service Webinar

- 1. Influence of the A / C system to the compressor FK
- 2. Service Shaft Seal
- 3. Troubleshooting, Root Cause
- 4. Maintenance and preventive maintenance

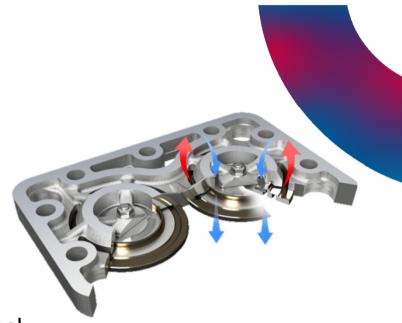
BOCK Mobile Compressor FK

- Four sizes FK 20-50 with 14 displacement stages : FK 40 up to 755 ccm FK 50 up to 980 ccm
- Individual customization / many accessories selectable capacity regulator, clutch, valves
- customized valve plates for special needs in mobile applications:
 - K-Plate for Bus and TK-plate for transport
- Strong and robust maintenance-friendly

BOCK Compressor (FK)

• Special Construction

- Strong crankshaft and hardened surfaces
- Roller bearings on both sides, designed for maximum forces
- Balanced crankshaft and dynamic mass compensation
 - for smooth operation and less vibrations
- Forged connecting rods
- Aluminum pistons with two piston-ring design



BOCK Compressor (FK)

- The K-Plate a Bock Innovation
 - Unique valve plate system for for the highest demands
 - Designed for Bus and Coaches
 - Ring valves made of high-quality, impact-resistant spring steel
 - Extremely robust and reliable
 - > Insensitive to permanent speed and pressure fluctuations
 - Extremely robust to liquid refrigerant

BOCK Compressor (FK)

- Special features K-Plate
- The valves are designed as a ring lamella package:
 - Free fixation witout bending and torsion force
 - $-\operatorname{No}$ parts can fall into the cylinder area
- Aluminum base plate for less weight

BOCK

• The N-Plate for A/C, standard and freezing applikation

BOCK Compressor (FK) Oil supply

• Special features - Safe oil supply for FK

- Reliable, direction-independent oil pump
- Large oil sump
- FK40/50 with two oil sight glasses
- FK30 with one sight glass
- Low oil throw

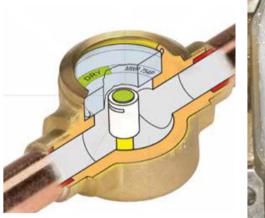
BOCK Webinar Mobile Verdichter

Contaminants from the system

- Chips
- Scale oxide
- Dust
- Production contamination

Moisture and foreign gases in the system

- Inadequate evacuation
- Leakage
- Saturated filter drier
- Contaminated refrigerant

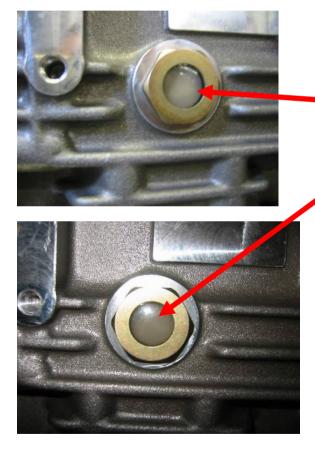


Preventive measures with every maintenance

- Check moisture indicator
- After opening the system:
 - sufficient evacuation
 - Change filter drier
 - Check the oil condition and change if necessary
- Dispose of contaminated refrigerant
- Use high-quality refrigerant
- Never leave the oil open
 - Use only fresh, sealed oil
 - Do not store open cans
- If necessary, take an oil sample and do a Laboratory analysis

Liquid Slugging

- Iced heat exchangers
- Clogged air filters
- Defective fan
- Defective expansion valve
- Defective liquid solenoid valve
- Refrigerant overfill
- Insufficient oil return
- Refrigerant shift
- Filling the system
- Suction gas superheating too small



воск

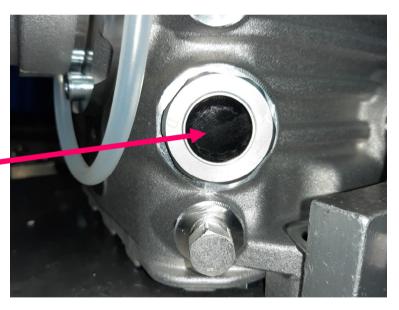
BOCK Webinar Mobile Verdichter

Suction gas superheat too small

- Target: min. 10K
- Measure suction gas superheat
- Check TXV settings
- Attention lack of lubrication

No visible oil level at the sight glass

Liquid refrigerant has dissolved in the oil and diluting it.

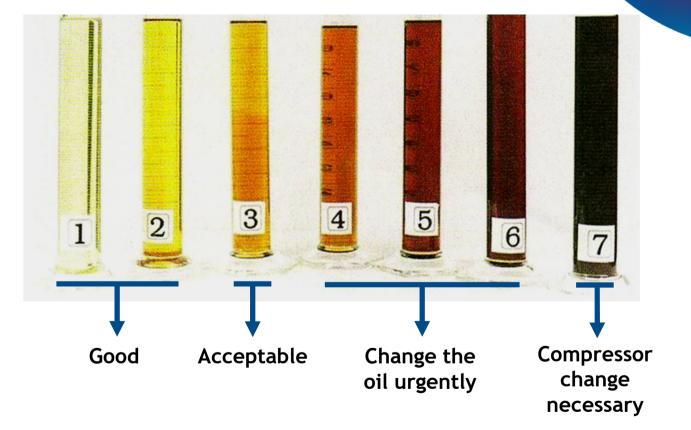

BOCK

Preventive measures with every maintenance

- Measure the suction gas superheat
 - >10K
- Check the check valve
- Check the solenoid valve for leaks and function
- Check oil return
 - Be careful when adding oil
- Clean air filter
- Check frost protection device

Clear sight glass '

BOCK

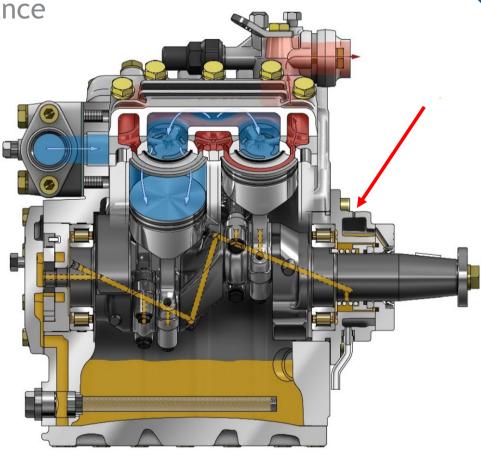

Preventive measures with every maintenance

- Check the oil level
 - If the oil level is too low, find the cause don't just fill it up
- Check the oil quality

- If necessary, change the oil
- If the oil is dark and smell bad also change the filter drier and the refrigerant.

Oil Quality

- Humidity
- Discharge end temperature
- Ambient temperature
- Foreign gas
- Oil aging
- Oil mixture
- Fluorescence additives


Wear Part - Shaft Seal

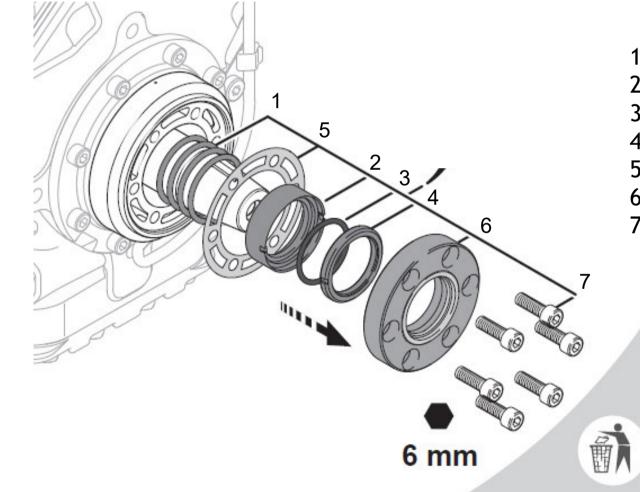
- Technically mandatory oil leak
- Is gas tight not oil tight
- Higher wear due to:
 - Incorrect belt tension (belt slapping)
 - Hight ambient temperature
 - Overheating
 - Operating conditions
 - Worn out oil
 - Humidity in system
 - Liquid slugging
 - Many start stop operations
 - Contaminated system (particles)
 - Lack of lubrication

Preventive measures with every maintenance

- Empty the oil collecting system with every service or maintenance
- After 1400 operating hours at the latest
 - Drain completely
- If the collecting system has overflowed:
 - Drain oil collecting system
 - Clean the compressor (e.g. brake cleaner)
 - It is not necessary to replace the shaft seal

Things to know about the FK shaft seal

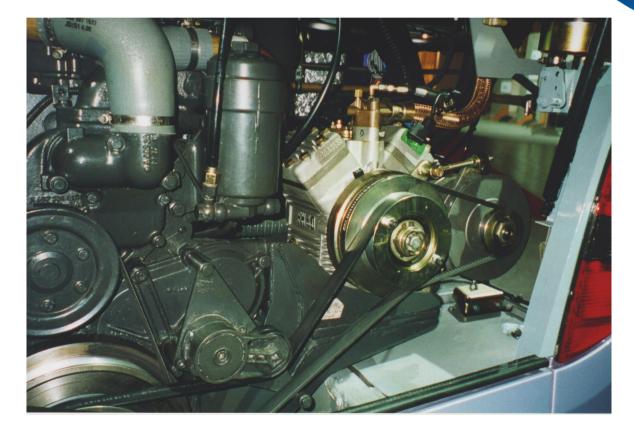
Technical data shaft seal


- Oil collecting system: max. 70 ml
- Average oil leakage: 0,05 ml/h
- Run in time: 200h 300h
 - The leak rate can be increased during the running-in phase.
- The oil collecting system should (on average) be emptied after 1,000 1,400 operating hours in order to avoid oil leaks.

Things to know about the FK shaft seal

Structure of the Bock shaft seal

BOCK



1 = Spring
2 = Guide ring
3 = O-ring
4 = slide ring
5 = Gasket shaft seal cover
6 = Shaft seal cover
7 = Screws

Preventive measures with every maintenance

- Belt tension:
 - Regular checking of the belt tension
 - Belt slamming must be avoided
- Regular replacement of the belt
 - Replace immediately if worn
 - Readjust the belt tension
- Clean the compressor if necessary

BOCK

Root cause FK Compressor

Cause - system contamination

- Due to contamination of the A / C system through the suction strainer, foreign particles appear in the sealing area of the shaft seal.
 - Particles <0.41 mm can be sieved.
 - Abrasion due to insufficient lubrication and liquid hammer. Chips, particles and scale from the pipeline system are also possible.
 - Oil color dark / gray / cloudy
- Suggested solution:
 - Replace filter drier.
 - Carry out an oil change (original Bock oil).
 - Replace the mechanical seal completely.
 - Flush the system if necessary.
 - Take an oil sample and determine the oil quality.

BOCK

Root cause FK Compressor

Cause - humidity

- Moisture in the circuit causes chemical decomposition of the refrigerator oil. The hydrolysis produces carboxylic acids and a wide variety of polyvalent alcohols.
 - Moisture due to insufficient evacuation of the system.
 - Moisture from "contaminated" service devices.
 - Moisture through leaks (evaporator, pipeline) and operation in a vacuum.
 - Reuse of refrigerant that has already been used.
- Suggested solution:
 - Replace the filter dryer if there is acid in the system, use a special filter dryer.
 - Carry out an oil change if necessary several times within a few weeks. (Original Bock oil).
 - Replace the mechanical seal completely.
 - Sufficient evacuation use Torr meter, evacuate at least 1 hour, this is also necessary for the initial assembly.

Broken gasket

- Shortcut between HP and LP
 - Not enought cooling capacity
 - Compressor will overheat
 - Compressor will break down due to lack of lubrication

Fluorescence additives

- Changes the propertyes of the oil
- Change the viscosity
- Changes the chemical stability

Electromagnetic Clutch

- Burned Solenoid
 - Under- or over voltage
 - Clutch slips (Clutch is overloaded)

• Suggested solution:

- Check the plugs
- Check the relay and controller
- Check the compressor
- Transmissible Torque (e.g. LA16):
 - after 10 operating cycles: = 420 Nm
 - new:

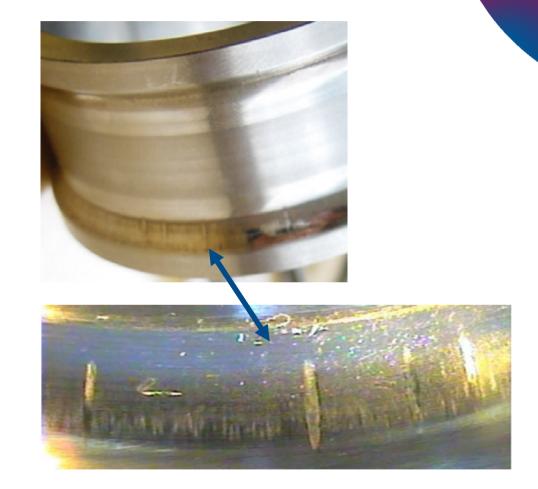
= 140 Nm

BOCK

Electromagnetic Clutch

- Fretting corrosion
 - Corrosion between clutch and compressor cone
 - Clutch was incorrectly mounted

• Suggested solution:


- Pay attention to a suitable assembly
 - Especially Woodruff key
- Do not use any grease
 - If the assembly is done well, it won't corrode

BOCK

Electromagnetic Clutch

- Bearing damage
 - Pitting of the bearing
 - Bearing ring damaged
- Non stop operation of the clutch
 - Use microclocking or switch the clutch off for a moment (every 30 minutes)
 - Kendrion Linnig recommend the IQ16 modul

BOCK colour the world of tomorrow

Bock GmbH . Benzstr. 7 . 72636 Frickenhausen . Germany . Tel +49 7022 9454-0 . Fax +49 7022 9454-137 . info@bock.de . bock.de